- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Burd, Randall S (1)
-
Gajos, Krzysztof Z (1)
-
Kim, Mary Suhyun (1)
-
Mastrianni, Angela (1)
-
Sarcevic, Aleksandra (1)
-
Sippel, Genevieve Jayne (1)
-
Sullivan, Travis M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
AI-enabled decision-support systems aim to help medical providers rapidly make decisions with limited information during medical emergencies. A critical challenge in developing these systems is supporting providers in interpreting the system output to make optimal treatment decisions. In this study, we designed and evaluated an AI-enabled decision-support system to aid providers in treating patients with traumatic injuries. We first conducted user research with physicians to identify and design information types and AI outputs for a decision-support display. We then conducted an online experiment with 35 medical providers from six health systems to evaluate two human-AI interaction strategies: (1) AI information synthesis and (2) AI information and recommendations. We found that providers were more likely to make correct decisions when AI information and recommendations were provided compared to receiving no AI support. We also identified two socio-technical barriers to providing AI recommendations during time-critical medical events: (1) an accuracy-time trade-off in providing recommendations and (2) polarizing perceptions of recommendations between providers. We discuss three implications for developing AI-enabled decision support used in time-critical events, contributing to the limited research on human-AI interaction in this context.more » « lessFree, publicly-accessible full text available October 18, 2026
An official website of the United States government
